
Optical measurement techniques with telecentric lenses 
1. Introduction 
 

 
This course on optical 2d-measurement 
technique has been created during the 
development of the telecentric lenses from 
Schneider-Kreuznach. First of all we had the 
idea to explain to the "non optics expert" the 
differencies between normal lenses and 
telecentric optical systems by introducing the 
laws of perspective (Chapter 2). 
But in the course of writing it became very 
soon evident that we had to deal with more 
then only explaining the laws of telecentric 
perspective. This because of various reasons: 
 
First of all there was a need to explain the 
relationship between the pure mathematical 
central projection (which is used in optical 
measurement technique in form of the "linear 
camera model" - originally developed in 
photogrammetry) and the ideal optical imaging 
by Gaussian Optics. 

The goal has been to give an answer to the frequently arising question: "what shall be 
considered as center of projection in optics - the pupils or the principal points?". To this end it 
has been necessary to introduce the principles of Gaussian Optics as well as the principles of 
ray limitations in Gaussian approximation.  
In the framework of such a "short course" this has been only possible in a very condensed 
form. We encourage the interested reader to go into more detail with the help of cited 
literature (chapter 7). 
 
The second reason for expanding the goal of this course has been to demonstrate the 
consequences of the ray bundles with finite aperture - in contrast to mathematical central 
projection with-one dimensional projection rays. 
The first of these consequences is concerned with the region of "sharp imaging", i.e. 
geometric optical depth of field and depth of focus. 
The second consequence of finite ray bundles is revealed if one considers the wave nature of 
light. Even with perfect image formation (without any aberrations) object points will be 
imaged to "points" with a certain extension. The extension of these image discs is depending 
on the wavelength of light and on the finite aperture of the ray bundles. This leads to certain 
modifications for the geometric optical depth of field, which will be treated in a short 
overview. (this is all found in chapter 3) 
 
After these preliminary  discussions we were able to enter into a more detailed treatment on 
the specific properties of telecentric perspective and is advantages for optical measurement 
technique. Here we have to distinguish between object side telecentric systems and the object 
and image side telecentric systems. The latter will be called bilateral telecentric lenses in the 
remainder of this course. 
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They possess similar advantages for optical measurement technique not only on the object 
side, but in addition on the image side. This will be discussed in detail particularly because all 
the telecentric lenses from Schneider Kreuznach are bilateral (chapter 4). 
 
In chapter 5 we try to give an overview on all possible error sources (to a first 
approximation) which may arise by the information transfer in optical 2d-measurement 
techniques. 
Here again the advantages of bilateral telecentric systems will be very evident, because they 
avoid "per se" a large number of error sources. 
 
The last chapter 6 gives an introduction and some explanations to the technical datasheets of 
the telecentric lenses from Schneider Kreuznach which may be found on this WEB-site. 
Based on this, the present shortcourse has the following structure: 
 
Optical measurement technique with telecentric lenses 
1. Introduction (this page) 
2. What means telecentric? - an introduction into the laws of perspective 
3. Gaussian Optics and its relation to mathematical central projection 

3.1 The mathematical model of central projection 
3.2 The ideal optical imaging (Gaussian Optics) and mathematical central projection 
3.3 The limitations of ray bundles 
3.4 The connection with the linear camera model 
3.5 Consequences of finite ray bundles I:  

geometric optical depth of field and depth of focus 
3.6 Consequences of finite ray bundles II: 
 the wave nature of light - diffraction effects 

3.6.1 diffraction limited (perfect) imaging 
3.6.2 diffraction and depth of field (or focus) 

4. Central projection from infinity - telecentric perspective 
4.1 object side telecentric systems 
4.2 bilateral (object and image side) telecentric systems 

5. Error budget for 2d-optical measurement techniques 
5.1 Centre of projection infinite distance (entocentric perspective) 
5.2 Centre of projection at infinity (telecentric perspective) 

6. Introduction to the bilateral telecentric lenses from Schneider Kreuznach 
7. Literature 
 
Finally we have the following hint and invitation: 
This short course will enable you - as our customer - to use our products with best efficiency. 
Nevertheless we are the opinion that "nobody is perfect" and that here are always possibilities 
to improve the form, design and content as well as the level of this course. 
So, if you have some proposals, wishes for additional matters or constructive points of 
critique, please don't hesitate to contact us. 
 
Your Schneider-Kreuznach team 

 
 
 



Optical measurement techniques with telecentric lenses  
  2. What are telecentric lenses? - an introduction to the laws of perspective  

 

Nearly everybody has had the experience of taking extreme tele- and wide angle photos. By 
taking pictures with extreme telephoto-lenses (long focal length lenses) the impression of 
spatial depth in the image seems to be very flat, e.g. on a race course, where the cars have in 
reality some distance, they seem to stick to each other. Whereas with extreme wide angle 
lenses (short focal lengths) the impression of spatial depth seems to be exaggerated. As an 
example we look at the two photos of a chess board.  

 

Fig. 2-1: Wideangle- and Teleperspective 

Both photos have been taken with a 35mm format camera (24 x 36 mm), the left one with a 
moderate wide angle lens (focal length 35 mm) and the right one with a tele-lens of 200 mm 
focal length. In both pictures the foreground (e.g. the front edge of the chess board) has about 
the same size. To realize this, one has to approach the object very closely with the wide angle 
lens (approx. 35 cm). With the tele-lens however the distance has to be very large (approx. 2 
m). One may clearly observe, that with the wide angle lens the chess figures, which were 
arranged in equally spaced rows, seem to become rapidly smaller, thus giving the impression 
of large spatial depth. In contrast, with the tele-lens picture the checker figures seem to reduce 
very little, thus leading to the impression that the spatial depth is much lower. What are the 
reasons for this different impressions of the same object?  

In order to give a clear understanding for these reasons, we look away from all (more or less 
complicated) laws of optical imaging by lenses and look at the particularly simple case of a 
pinhole camera ("camera obscura"). In the past the old painters - e.g. Dürer - used this 
resource to study the laws of perspective. Imaging by the pinhole-camera is a simple model 
for  imaging by lens systems. In chapter 3 we will explain how this model is connected to real 
imaging with lenses.  

As the name indicates, a pinhole-camera consists of a square box with a very small hole at the 
front side and on the rear side we have a focussing screen or a light sensitive plate. This rear 
side plane we will call the image plane. The size of the hole in the front side we imagine - at 
this instance very naively - to be so small, that only one single ray of light may pass through. 
The distance between the front and rear side of the camera we call the image width e'. With 
this pinhole camera we want to image different regularly spaced objects of the same size into 
the image plane. Fig. 2-2 shows a side-view of this arrangement.  



 

Fig. 2-2: Imaging with a pinhole camera 

Each object point, e.g. the top of the objects-characterised by the arrows - will emit a bundle 
of rays. But only one single ray of this bundle will pass through the pinhole onto the image 
plane. Thus this ray indicates the top of the object in the image and hence its size. All other 
rays of this object point are of no interest for this image.  
In this manner, if we construct the images of all the objects, we will see that the images will 
be smaller and smaller the more the distant the objects are from the pinhole. The pinhole is 
the center, where all imaging rays cross each other. Therefore we will call it the projection 
center.  

To summarize: The farther away the object is located from the projection center, the 
smaller the image. This kind of imaging is called entocentric perspective. .  

The characteristic feature of this arrangement is, that viewed in the direction that the light 
travels, we first have the objects, then the projection center and finally the image plane. The 
objects are situated some finite distance in front of the projection center.  

But what are the reasons for the different impressions of spatial depth? With the wide angle 
lens, the distance to the first object y, is small whereas with the tele-lens this distance is 
considerably larger, by a factor of 6. We shall simulate this situation now with the help of our 
pinhole-camera (fig. 2-3):  

 

 

 

 

 

 



Fig. 2-3: Imaging with different object distances 

The picture on top (case a) shows the same situation as in the preceding fig. 2-2. In the picture 
on bottom (case b) the distance to the first object is 3.5 times as large. In order to image the 
first object y1 with the same size as in case a we have to expand the image distance by the 
same factor 3.5 correspondingly. We see now, that the three objects y1, y2, y3 have nearly the 
same size, exactly as with the telephoto lens of fig. 2-1. Whereas in case a, the image of y3 is 
roughly half the size of the image of y1, it is in case b three quarter of that size. There would 
have been no change in the ratio of the image sizes if the image distance e' in case b would 
have been the same as in case a, only the total image size would become smaller and could be 
enlarged to the same size.  
Conclusion: The only thing that is important for the ratio of the image sizes is the 
distance of the objects from the projection center.  

To gain a clearer picture of the resulting spatial depth impression, we have to arrange the 
object scene in space, as shown in the following fig. 2-4:  

Here we have two rows 
of equally sized and 
equally spaced objects 
(arrows). The objects 
we may imagine to be 
the chess figures of fig. 
2-1. The pinhole 
camera is looking 
centrally and 
horizontally in between 
the two object rows at a 
distance e1 and height 
h relative to the objects. 
The objects are marked 
with different colors for 

Fig. 2-4: Positional arrangement of the objects in space                   clarity. For the 
construction of the images taken with different object distances, e1, we choose to view this 



scene from above. This is shown in fig. 2-5: 
  

Here the objects are represented 
by colored circles (view from 
above) and are situated on the 
gray background plane. The 
pinhole camera is shown by its 
projection center and its image 
plane. The image plane is 
perpendicular to the screen and is 
therefore only seen as a straight 
line. The projection rays (view 
from above) are colored 
according to the objects colors. 
Only one row of the objects is 
shown for the sake of clarity and 
not to overload the drawings.  
The two parallel straight lines, on 
which the objects are positioned 
intersect each other at infinity. 
Where is this point located in the 
image plane? It is given by the 
ray with the same direction as the 
two parallel straight lines passing 
through the projection center and 
intersecting the image plane.  

If we tilt the image plane into the 
plane of the screen, we may now 
reconstruct all the images. The 
horizon line (skyline) is to be  

Fig. 2-5: Constructing the images of the object scene 

found at an image height h' as the image of the height h of the pinhole camera above the 
ground. The point of intersection of the two parallel lines at infinity is located in the image 
plane on this horizon and is the far-point F for this direction. We transfer know all the 
intersection points of the projection rays with the perpendicular image plane onto the tilted 
image plane. The connecting line between the intersection point of the red projection ray and 
the far point gives the direction of convergence of the two parallel object lines in the image. 
In this way we may construct all the images of the different objects.  
  

If we now rotate the image by 180 degrees and remove all auxiliary lines we then see very 
clearly the effect of different perspective for the two object distances. This is in rather good 
agreement with the photo of the introductory example fig. 2-1.  

Imagine now, that we want to measure the heights of the different objects from their images. 
This proves to be impossible because equally sized objects have different image sizes 
depending on the object distance which is unknown in general. The requirement would be that 
the images should be mapped with a constant size ratio to the objects. Only in this case would 
equally sized objects result in equally sized images, independent of the object distance. In 



order to see what this requirement implies, we will investigate the image size ratios of 
equally sized objects under the influence of the object distance (fig. 2-6):  

 

Fig. 2-6: image size ratio and object distance 

From fig. 2-6:  

 
The image size ratio y'1/y'2 will be called m. Dividing the first by the second equation and 
knowing that  y1 = y2 will result in the following:  

 
The image sizes of equally sized objects are inversely proportional to the 
corresponding object distances  
Additionally with:  

 
we have:  

 
If now e1 becomes larger and larger, the ratio  

 
approaches 1, and hence also the image size ratio y'1/y'2. In the limit, as e1 reaches infinity, the 
image size ratio will be exactly 1.  



This is the case of telecentric perspective:  
the projection center is at infinity, and all equally sized objects have the same image size  

Of course we may not realize this in practice with a pinhole camera, since the image distance 
e' would also go to infinity. But with an optical trick we may transform the projection center 
to infinity without reducing the image sizes to zero. In front of the pinhole camera, we 
position a lens in such a way that the pinhole lies at the (image side) focal point of this lens. 
Details will be explained in chapters 3 and 4 (see fig. 2-7):  

Fig. 2-7: object side telecentric perspective 
The image of the pinhole imaged by the lens onto the left side in the object space is now 
situated at infinity. Only those rays parallel to the axis of symmetry of the pinhole camera will 
pass trough the pinhole, because it lies at the image side focal point of the lens. That's why all 
equally sized objects will be imaged with equal size into the image plane.  
As a consequence of the imaging of the pinhole, we now have two projection centers, one on 
the object side (which lies at infinity) and one on the side of the images, which lies at a finite 
distance e' in front of the image plane. Therefore this arrangement is called object side 
telecentric perspective.  

 
 
Hypercentric perspective  
If the pinhole is positioned with regard to the lens in such a way that its image (in object 
space on the left) is situated at a finite distance in front of the objects, the case of 
hypercentric perspective is realized (see fig. 2-8):  



 

Fig. 2-8: hypercentric perspective 
The projectied rays (passing through the pinhole) now have a direction, such that their backward 
prolongations pass through the object side projection center. All equally sized objects will now be 
imaged with larger size the farther they are away from the pinhole camera. Thus we may look 
"around the corner"!  

 

At the end of this chapter we will have a look at some examples which are of interest for 
optical measurement techniques. The object is a plug-in with many equally sized pins. Fig.2-8 
shows two pictures taken with a 2/3 inch CCD-camera and two different lenses  

 

Fig. 2-8: entocentric and telecentric perspective 
The left side picture is taken with a lens with a focal length of 12 mm (this corresponds 
roughly to a standard lens of 50 mm focal length for 35mm format 36 x 24 mm). Here we 
clearly see the perspective convergence of parallel lines, which is totally unsuitable for 
measurement purposes. On the other hand, the telecentric picture on the right, which is 
taken from the same position shows all the pins with equal size and is thus suited for 
measurement purposes.  



The perspective convergence is not only true for horizontal views into the object space, but 
also for views from the top of the objects. This is shown in the following pictures for the same 
plug-in (fig. 2-9)  

 

Fig. 2-9: Viewing direction form the top of the object 

The picture with the standard lens (f ' = 12 mm) shows only one pin exactly from top (it is the 
fourth counted from left). All others show the left or right side wall of the pins. For the picture 
with a three-times tele lens (f ' = 35 mm), this effect is already diminished. But only the 
picture taken with a telecentric lens clearly shows all pins exactly from top. In this case, the 
measurement of all the pins is possible.  

3. Gaussian Optics and its relation to central projection 

3.1 The mathematical model of central projection 
 
The linear camera model as used in digital image processing corresponds mathematically to a 
rotational symmetric projective transform. The points of an object space are related to the 
points of an image plane. 
Geometrically we may construct this central projection by straight lines which proceed from 
the points in object space trough the projection center P to the intersection point with the 
projection plane (= image plane). These intersection points represent the image points related 
to the corresponding object points. (Fig. 1-1). 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3-1: The linear camera model 
 
This model is hence represented by a projection center and the relative position of the image 
plane hereto. The position of the image plane is given by the distance c to the projection 
center 8camera constant) and by the intersection point of the normal from the projection 
center to the image plane (image principal point HP). 
 
This normal represents an axis of rotational symmetry: all object points located in the same 
plane and with the same distance from this axis are imaged to the image plane with equal 
distance to the point HP. 
 
Further on we may see that this transformation is a linear imaging of the object space onto the 
image plane. Straight lines in the object space are imaged onto straight lines in the image 
plane. However this imaging has no one to one correspondence. Each object point 
corresponds definitely to a single image point, but one single image point is related to an 
infinity of object points, namely all those points which lie on the projection ray through the 
projection center P. 
 
The projection rays are purely one-dimensional lines and the projection center is a 
mathematical dimensionless point. 
A pinhole camera (camera obscura) realizes this model of an ideal imaging in approximation. 
Each image point is created as a projection of the pinhole from the object point. (geometrical 
optical shadow image). If we disregard for the moment the wave nature of light (diffraction) 
then this approximation will be better and better, the smaller we choose the dimension of the 
pinhole, and in the limiting case of vanishing pinhole diameter it represents the mathematical 
model. 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Fig. 3-2: The pinhole camera as linear camera model 
 
 
3.2 Central projection and Gaussian optics 
 
How can we now approximate the linear camera model by a real imaging situation (with non 
vanishing aperture)? 
 
The real physical imaging with light is connected with some energy transfer. In optics this is 
done with electromagnetic radiation in the optical waveband (UV to IR). Therefore this 
imaging is depending on the laws of propagation of electromagnetic waves, whereby the 
energy transport requires a finite aperture of the optical system. Because of the wave nature of 
this radiation, the image point corresponding to a certain object point is no longer a 
mathematical point, but has a certain finite extension. 
For the spectral range of visible light the wavelength of the electromagnetic radiation is very 
small (approx. 0.5 µm) resulting in extensions of the image points of the order of magnitude 
5 ... 10 µm. Therefore we may neglect in many cases (in a first step) the wave nature of light 
(later on we will again reconsider this). 
 
It may be shown, that for the limiting case of vanishing wavelength the propagation of light 
can be described in form of light rays. These light rays represent the direction of energy flux 
of the electromagnetic waves and are normal to the wave front surfaces. The propagation of 
the light rays at refracting media (e.g. lenses) is described by the law of refraction (Fig. 3-3). 
 
  



 
Fig. 3-3: The law of refraction 

 
 
As we may see, the law of refraction is nonlinear, so we may not expect to get a linear trans-
formation (central projection) by the imaging with light rays (Fig. 3-4). 
 

  
Fig. 3-4: No point-like intersection of ray for wide aperture ray bundles 

 
If we consider however only small angles between the rays and the normal to the lens surface, 
then we may approximate the sine-function by the angle alpha itself. In this case we come to a 
linear imaging situation. (at 7° the difference between the sine function on the angle in rad is 
appr. 1 %) 
 
As may be shown, we have a one to one correspondence between object points and related 
image points for a system of centered spherical surfaces (e.g. 2 spherical surfaces = 1 lens). 
The axis of symmetry is then the optical axis as the connecting line of the two centers of the 
spheres. 
 
This new model of ray optics is to be understood as follows: From every point in object space 
there will emerge a homocentric ray bundle. Homocentric means that all rays have a common 
intersection point. This bundle of rays is transformed by the lens system (under the 



assumption of small refracting angles) into a convergent homocentric ray bundle. The 
common intersection point of all rays in the image space defines the image point (Fig. 3-5). 
 

 
 
Fig. 3-5: Common intersection points of the pencils of light for small refracting angles 
 
The range of validity of this linear imaging is hence restricted to small refracting angles, and 
the region is given by a small tube-like area around the optical axis which is known as 
paraxial region. 
The imaging laws in the paraxial region are described by Gaussian Optics. 
 
As we see, Gaussian Optics represents the ideal situation of imaging and serves as a reference 
for the real physical imaging. All deviations from Gaussian Optics are considered as image 
errors (or aberrations = deviations) although these are of course no errors in the sense of 
manufacturing tolerances but are due to the underlying physical lens. A huge a mount of 
effort during lens design is spent to the objective to enlarge the paraxial region so that the 
system may be used for practical applications. In this case the optic-designer is forced to use 
of course more then one single lens, whereby the expense and the number of lenses will 
increase with increasing requirements on image quality. 
 
How does Gaussian Optic describe now this ideal imaging? Since all rays have a common 
intersection point, it will suffice to select such two rays for which we may easily find the 
direction of propagation. All other rays of the pencil will intersect at the same image point. 
The propagation of characteristic rays (and therefore the whole imaging situation) is given by 
the basis Gaussian quantities, also called cardinal elements (Fig. 3-6). 
 
 
 
 
 
 
 
 



 
 Fig. 3-6:Cardinal elements and the construction of images in Gaussian optics 
 
Optical axis: straight line trough all centers of spherical surfaces 
 
Focal points F, F': Points of ray intersections for a pencil of rays parallel to the optical 
  axis in object space (intersection point at F' in image space) or in image 
  space (emerging from F in object space) 
 
Principal planes H,H': Planes in object and image space, which are conjugate to each other 
  and are imaged with a magnification ratio of  +1. Conjugate hereby means 
  that one plane in the image of the other 
 
Principal points H+,H'+: The intersection points of the optical axis with the principal planes. 
  For equal refractive indices in object and image space (e.g. air) we have: 
  a ray with direction through the object side principal point H+ will leave the 
  optical system with the same direction and virtually emerges from the image 
  side principal point H'+. 
 
Focal length f, f ': directed distance HF (object side) or H'F' (image side). For systems in 
  equal media (e.g. air) we have: f = -f '. 
 
With these cardinal elements we may construct the three rays (1) - (3) as in Fig. 3-6. Hereby it 
is of no importance if these rays pass really through the optical system or not, because all 
other rays will intersect at the same image point. 
 
Ray 1: Ray parallel to the optical axis, will be refracted to pass through the image side 
 focal point 
 
Ray 2: Ray passing through the object side focal point, will be refracted to leave the  
 optical system parallel to the optical axis 



 
Ray 3: A ray passing through the object side principal point leaves the system parallel 
 to itself and seems to originate from the image side principal point. 
 (Only valid for equal media in object and image space, e.g. air) 
 
Note: 
The meaning of object and image space is as follows: Object space means: before the imaging through the 
optical system  Image space means: after the imaging through the optical system From a purely geometrical 
viewpoint these two spaces may intersect each other. This will be the case e.g. for a virtuel image (cf. Fig. 3-8) 
 
 
3.3 The finite apertures of ray bundles 
 
In every technical realization of optical systems we have limitations of ray bundles e.g. at the 
edges of lenses, on tubes, stops etc. These limitations have effects on the cross sections of ray 
pencils and on the resulting image. In principle we exceed the range of validity of Gaussian 
Optics, the paraxial region. If we interpreted however Gaussian Optics as the ideal model of 
optical imaging, then we may find out the consequences of finite ray bundles on the imaging 
in a first approximation. 
 
In general the ray pencils will be limited by a mechanical stop (the iris stop) within the optical 
system (without mechanical vignetting by other elements). 
The limitations of the ray bundles in object- and image space will be found when we look at 
the image of this stop (i.e. by the approximation of Gaussian Optics) imaged back words into 
object space and forward into image space. The image of the stop in the object space is called 
entrance pupil (EP). You will see this entrance pupil when you look at the lens from the 
front side. Accordingly the image of the sop in image space is called exit pupil XP. This 
image may be seen, when looking at the lens from the rear side (Fig. 3-7). 
 

 
   Fig. 3-7: The limitations of ray pencils 
 
The ray pencils are limited by the pupils (EP in object space and XP in image space). 



If the object point is situated on the optical axis, the limiting rays of the pencil are called 
marginal rays RS. They proceed from the axial object point to the edges of the entrance 
pupil EP and from there to the edges of the exit pupil XP and finally to the axial image point 
(red). 
For object points outside the optical axis the limiting rays of the pencil are called pharoid 
rays (PS). They proceed from the off-axis object point to the edges of the entrance pupil (EP) 
and from the edges of the exit pupil (XP) to the off-axis image point. (green) 
The central ray of these pencils is called the principal ray PS (drown in blue). It proceeds 
from the object point to the center of the entrance pupil (P) and on the image side from 
the center of the exit pupil (P') to the image point. 
 
The ratio of the diameters of exit- to entrance pupil is called the pupil magnification ratio 
βP. 

    
ENP
EXP

P Φ
Φ

=β  

 
The finite aperture of the ray pencils is characterized by the f-number K 
 
    K = f '/∅EP 
 
or, alternatively by the numerical aperture A. For systems surrounded by air we have: 
 
    maxsinα=A  
 
Hereby αmax is half of the aperture angle of the ray pencil. Relation between f-number and 
numerical aperture: 

A
K

⋅
=

2
1  

 
The principal rays are the projection rays of the optical imaging. The intersection point of 
the principal ray with the image plane defines the focus of the image point, since it is the 
center of the circle of confusion of the ray pencil for image points in front or behind the image 
plane. Here we may notice an important difference with respect to mathematical central 
projection: caused by the aperture of the ray pencils, there is only a single object plane which 
is imaged sharply on the object plane. All points in front of behind this "focussing plane (EE)" 
are imaged as discs with a certain circle of confusion. 
 
Because of the existence of a ray limiting aperture in object- as well as in image space (ENP 
in object space, EXP in image space) we now have two projection centers one at the center P 
of the entrance pupil on the object side and another one at the center P' of the exit pupil on the 
image side. If the pupil magnification differs significantly from 1 then the object- and image 
side angles of the principal ray w and w' will differ significantly. 
 
The Gaussian imaging is described by imaging equations with reference to two coordinate 
systems, one on the object side (for all object side entities) with origin at the center P of the 
entrance pupil and another one on the image side (for all image side entities) with origin at the 
center P' of the exit pupil.  
 
The imaging equations are given by: 
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ΦEXP and ΦENP are the diameters of the exit and entrance pupils respectively. 
 
The sign conventions are taken according DIN 1335! 
 
Some other forms of imaging equations are possible, if we take the origins of the coordinate 
systems in the focal point F, F'. Then the object and image distances will be denoted by z and 
z'. 
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We will need this form later for telecentric systems. 
The cardinal elements of Gaussian Optics with reference to the optical system are given by 
the lens manufacturer in form of "paraxial intersection lengths". These are the distances of the 
cardinal elements from the first lens vertex (for object side elements) and the distances of 
image side cardinal elements from the last lens vertex. These distances are denoted by "S" and 
"S'" with an index for the cardinal element, e.g. SF; SH; SEP / S'F'; S'H'; S'XP. In order to explain 
the situation more clearly, we shall have a look onto a real optical system. It is a lens for a 
CCD-camera with C-mount (Xenoplan 1.4/17 mm from Schneider Kreuznach). The 
cardinal elements are given in the corresponding technical data sheet and are as follows: 

 
• f’=17.57 mm 
• HH’=-3.16 mm 
• K=1.4 
• SEP=12.04 mm 
• SF = 6.1 mm 
• S’F’ = 13.6 mm 
• S’H’ = -4.41 mm 
• S’AP = -38.91 mm 
• βP = 2.96 
• d = 24.93 mm 
 
 
 
 
 
 

 



Fig. 3-8 shows the ray pencils for this example. 

 
 Fig. 3-8: Apertures for the ray pencils of the lens 1.4/17 mm 
 
 
 
Here the object- and image space intersect each other geometrically! The exit pupil XP 
for instance is situated in front of the system but belongs nevertheless to the image space, 
because it is the image of the aperture stop (iris) imaged through the optical system into the 
image space (virtuel image). Because of the relative large pupil magnification ratio (βP ∼ 3!) 
the angles of the principal rays in object space (ω) and in image space (ω') differ significantly 
from each other. 
 
 
3.4 The relation to the linear camera model 
 
Now the question arises, how this model of Gaussian imaging (with two projection centers) is 
related to the mathematical model of central projection as outlined in Fig. 3-1 ? 
In order to reconstruct the objects (out of the image coordinates) we have to reconstruct the 
object side principal ray angles w. This may not be done however with the help of P' as 
projection center since the angles w and w' are different in general. 
We rather have to choose the projection center on the image side in such a way that we 
get the same angles to the image points, as one would have from the center of the 
entrance pupil P to the corresponding object points. 
We will denote this new projection center by P*, with its distance c to the image plane. Thus 
the following relation must hold: 
     ω =  ωP* 
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This equation describes nothing else then the scaling of the projection distance on the 
image side: 
Since the image has changed in size by the factor β with respect to the object in the focussing 
plane, we also have to change the distance of the projection center (in object space = e) in 
image space correspondingly in order to have the same inclination angles of the projection 
rays.      
 
Thus we have derived the connection to the mathematical central projection of Fig. 1-1: 
The common projection center is P = P* (P = center of the entrance pupil) and its distance to 
the image plane is equal to the camera constant c. For c we have: 
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(In photography, this distance is called the "perspective correct viewing distance). Fig. 3-9 
shows this situation. 
 
 

 Fig. 3-9: The projection model and Gaussian Optics 
 
In order to exclude all misinterpretations: 
If one deals with error considerations with variation of imaging parameters (e.g. 
variation of the image plane position - as in chapter 5) we always must consider the real 
optical pencils. The projection ray in Fig. 3-9 on the image side is a pure fictions entity. 



 
Note concerning ray bundle limitations in Gaussian approximation 
We may argue against the presented model of ray pencil limitations, that in general the pupil 
aberrations are large and that hence the Gaussian model may not be applied in reality. But 
indeed we only use the centers of the pupils to develop the projection model. 
 
If we introduce canonical coordinates according to Hopkins [2] then we may treat - also in 
the presence of aberrations - the limitation of ray pencils and the projection model in a 
strictly analogous manner. The pupils are then represented by reference spheres and the wave 
front aberrations are expressed with reference to these spheres. The reduced pupil 
coordinates then describe the extensions of the ray pencils and are represented by unit circles 
- independent of the principal ray inclination angles. For a detailed treatment we refer to [2]. 
 
3.5 Consequences of the non vanishing aperture of the ray bundles I: 
      depth of field and depth of focus 
 
As a consequence of the finite aperture of the ray bundles there will be only one particular 
object plane (the focussing plan) which is imaged sharply onto the image plane. All other 
object points in front or behind this focussing plane are imaged as circles of confusion. The 
center of this circle of confusion is given by the intersection print of the principal ray with the 
image plane. The just tolerable diameter dG of this circle is depending on the resolution power 
of the detector. 
 
In this way we have a depth of sharp imaging in the T' (depth of focus) in the image space 
giving just sufficiently sharp images. Conjugate to this there is a depth of field T in the object 
space object points which are within this region T may be imaged sufficiently sharp onto the 
image plane (see Fig. 3-10). 

 
  Fig. 3-10: Depth of field T and depth of focus T' 
 



Besides the permissable circle of confusion d'G the depth of field depends on the parameters 
of the optical imaging situation. One may describe the depth of field as a function of the 
object distance e from the entrance pupil EP or as a function of the magnification ratio β: 
The sign conventions are valid according to the object- and image side coordinate system (e, y 
and e', y') and are in correspondence with the German standard DIN 1335. 
 
Depth of field as a function of the object distance 
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Within the range of validity of the second approximation the depth of field T is inversely 
proportional to the square of the focal length (with constant distance e), i.e. reducing the focal 
length to one half will increase the depth of field by the factor 4. 
 
Examples for the wide range of validity of the second approximation: 
 
We choose d'c = 33 µm   k = 8    βp = 1. 
 
Then we have for 
 
 f ' = 100 mm:      1 <  /e/ < 12.5 m 
 f ' =   50 mm:   0,5 m   < /e/ < 3 m 
 f ' = 35 mm:     0,35 m < /e/ < 1.5 m 



 
Depth of field as a function of magnification ratio β: 
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Example for the validity range of this approximation: 
 
We set:  d'G = 33 µm  f ' = 50 mm  K = 16 
 
then we have: 
   /β/ > 1/30 
 
Depth of focus:  
 
     T  Ge dKT '2' 2 ⋅⋅=⋅= β



3.6 Consequences of the finite aperture of ray bundles II: the wave nature of light –  
      diffraction effects 
 
3.6.1 Diffraction limited (perfect) imaging 
 
The light rays of geometrical optics represent only an approximate model for the description 
of the optical imaging. 
If one examines structures (e.g. point images) with extension in the order of the wavelength of 
light (0.5 µm) then this model fails. 
A perfectly corrected optical system - from the viewpoint of geometrical optics - will 
transform the diverging homocentric ray bundle of an object into a converging homocentric 
bundle, and the common intersection point of all the rays of this bundle is the image point 0' 
(see Fig. 3-11). 

 
 

                                           

Fig. 3-11: Homocentric ray bundle and spherical wave fronts 
 
In spite of the results of geometrical optics (ray model) the image 0' is not an exact point but 
has a certain extension. The rays of the convergent bundle are only fictions entities, which 
represent nothing else then the normal to the wave front. For a perfectly corrected optical 
system * these wave fronts have the shape of spherical surfaces with the center in 0'. They are 
limited by the diameter of the entrance pupil (EP on the object side) and by the diameter of 
the exit pupil (XP on the image side). 
Because of these limitations of the spherical wave fronts, the resulting image is not a point 
without extension, but a blurred disk, the diffraction disc. 
The form and extension of this disc depends on the wavelength of the light and on the form of 
the spherical wave front limitation.* 
 

 
* Note: A perfect (or diffraction limited) optical system is given, if the wave front in the exit  
   pupil departs less then λ/4 from an ideal sphere (Rayleigh criterion). 
 



 
For circular apertures (as usual in optics) the distribution of the illumination in the image 
plane is given by the Airy diffraction disc. For points located on the optical axis this 
diffraction disc is rotational symmetric. Fig. 3-12 shows this Airy disc (for a wavelength of 
light of 0.5 µm and for effective f-No Ke = 11, 16, 32, as well as an enlarged section. 

 
 Fig. 3-12: The Airy disc for on-axis object points 
 
The extension of the airy disc depends on two parameters: the wavelength λ of light and 
the aperture angle of the homocentric ray bundle. 
 
Instead of on ideal point we have in the geometrical image plane a central disc surrounded by 
some diffraction rings (fringes) with rapidly decreasing intensity. The extension of the central 
disc up to the first dark ring is given by: 
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This is usually taken as the radius of the diffraction disc. Within this region we encounter 
approx. 85 % of the total radiant flux, the first bright ring has 7 % and the rest is up to the 
bright rings of higher order. 
 
For object points outside the optical axis the homocentric ray bundle is no longer a rotational 
symmetric circular cone since the entrance pupil is viewed from the position of the object 
point as an ellipse. For larger field angles ω this effect will be even more pronounced. 
Therefore the Airy disc has now an elliptical shape, whereby the larger axis of the ellipse is 
pointing radially in the direction of the image center. For the larger and smaller semi-axis of 
the Airy disc (up to the first dark ring) we now have 
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r0 = radius of the Airy disc on the optical axis 
 
Besides this point spread function, the user is also interested in the image of an edge (edge 
spread function - especially for optical measurement techniques). This may be derived from 
the point spread function. Fig. 3-13 shows some diffraction limited edge spread functions (for 
the image center and for the effective f-numbers Ke = 11, 16,32). 

 
 Fig. 3-13: Diffraction limited edge spread functions for Ke = 11, 16, 32 
 
 
 
3.6.2 Diffraction and depth of focus 
 
We may ask now, how the optical radiation is distributed outside the geometrical image plane 
and how the geometrical-optical cone of rays is modified. 
This problem has been solved first by Lommel [5] and nearly at the same time by Struve. 
From this solution and with the properties of the so called Lommel-functions we may derive 
the following general conclusions: 
 
(1) The intensity distribution is rotational symmetric to the optical axis. 
(2) The intensity distribution in the neighborhood of the focus is symmetric to the geometrical 

image plane. 
 



Lommel calculated the intensity distribution for various planes near the geometrical focus. 
From these data one may construct the lines of equal intensities (Isophotes). 
Fig. 3-14 shows these lines in normalized coordinates u, v (only for the upper right quadrant 
of the ray cone because of the mentioned symmetry properties). 
 
 
 
 

 Fig. 3-14: Isophotes of the diffraction intensity near focus 
 
The normalized coordinates have been introduced in order to be independant of the special 
choice for the effective f-number and the wavelength of light. 
 
For the normalized abscissa u we have: 
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Here z is the coordinate along the optical axis with origin in the Gaussian image plane. 
For the normalized ordinate v we have: 
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r  is here the distance to the optical axis r = 22 yx +  
 
Intensity distribution along the optical axis: 
 
From the general Lommel relations one may calculate the intensity distribution along the 
optical axis (maxim intensity of the point spread function with defocussing). 
 
The maximum intensity of the point spread function with defocussing (along the optical axis) 
is changing with a sinc2-function. The first point of zero intensity is given by 



 
     u = 4 π 
 
in accordance with the isophotes of fig. 3-14. 
 
Fig. 3-15 shows the intensity distribution along the optical axis. 
 

 
 
 Fig. 3-15: Intensity of the diffraction limited point spread function along the  
                            optical axis 
 
The ratio of the maximum intensity of the point spread function with defocussing to the 
intensity in the Gaussian image plane is a special case of the so called Strehl intensity. 
It may by shown, that with pure defocussing a Strehl ratio of 80 % corresponds to a wave 
front aberration of λ/4 which is equivalent to the Rayleigh-criterion. It will be taken as 
permissable defocussing tolerance for diffraction limited systems. 
The sinc2-function of fig. 3-15 decreases by 20 % for u ∼ 3.2 ∼ π. Thus we have for the 
diffraction limited depth of focus: 
      22' eB KT ⋅⋅±= λ
 
Here the question immediately arizes as to what will be the extension of the point spread 
function at these limits of the diffraction limited depth of focus. Here we need a suitable 
criterion for the extension of the point spread function. 
For the Gaussian image plane we already defined it, it is the radius r0 of the central disc. This 
disc contains 85 % of the total radiant power. We generalize this criterion and define: 
The extension of the point spread function in a defocussed image plane is given by the 
radius which covers 85 % of the total radiant power. 
With this we may generalize our question: 



What are the limits of the point spread function as a function of defocussing and when do 
they coincide with the geometrical shadow border (defined by the homocentric ray pencil) ? 

 
The result of this (relatively complicated) calculation for 85 % of encircled energy may be 
approximated in normalized coordinates u, v by a hyperbolic curve (Fig. 3-16). 

 
 Fig. 3-16: 85 % point spread extension and the geometrical shadow region 
 
We define: The limit of geometrical optic is given, if the 85 % point spread diameter lies  
10 % over the geometrical shadow region. This is given according to fig. 3-16 for a = ± 10;  
v = 11 
 
With that we may derive the following general statements: 
 
 
 
(1) The extension of the diffraction disc is always larger (or in the limit equal) to the 

geometrical shadow limit 
(2) With the above definition the geometrical shadow region is reached for u ∼ 10. 

 
(3) For the extension of the diffraction disc in the focussing plane (u = 0), at the diffraction 

limited depth of focus (UB ≈ 3.2) and at the approximation to the geometrical shadow 
region (u ≈ 10) we may thus deride the following table 1 when taking into consideration 
the relationships for the normalized coordinates u, v. 
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 u z v r r/r0 
focus 0 0 3.83 r0=1.22λ.Ke 1 
diffr.limited 
depth uB≅3.2 zB=2λ.Ke

2 vB≅5.5 rB≅1.75.λ.Ke ≅1.43 

geometrical 
shadow limit uS=10 zS=6.4.λ.Ke

2 vS≅11 rS≅3.5.λ.Ke ≅2.9 

 
 
Table 1: Diffraction limited disc extension for 3 different image planes 
 
 

Conclusions for depth of field considerations: 
 
(1) Diffraction and depth of focus 

As may be seen from fig. 3-16, it is not allowed to add the diffraction limited depth of 
focus to the geometrical depth of focus (defined by the permissable circle of confusion). 
One has to use only the geometrical depth of focus. 
 

(2) Diffraction and permissable circle of confusion 
In addition one has to examine if the permissable circle of confusion is exceeded by 
diffraction. Here the following procedure is useful: 
The diameter of the diffraction disc approximates the geometrical shadow region for u = 
10. Thus it follows (as has been shown): 
 
  d's = 7 ⋅ λ ⋅ Ke  (cf table, d's = 2 ⋅ rs) 
 
This value is proportional to the effective f-number. It shall not be larger then the value of 
the permissable circle of confusion d'G. 
 
   d'G ≥ d's = 7 ⋅ λ ⋅ Ke 
 
From this we derive the maximum f-number at which we may calculate with the 
geometrical depth of focus:  
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The following table 2 shows the maximum effective f-number for various permissable circles 
of confusion d'G up to which we may use the geometrical approximation 
 
d’G[µm] 150 100 75 60 50 33 25 10 
Ke(max) 43 28 21 17 14 9.5 7 2.8 
 
 Table 2: maximum effective f-number for geometrical calculations 
 
When the effective f-numbers are larger, then the diffraction limited disc dimensions 
will be larger then the permisssable circle of confusion. 
 
In this case we have to give an estimate for the diameter of the diffraction disc at the limits of 



the geometrical depth of focus. From the expression of the hyperbolic curve of fig. 3-16, one 
may derive after some calculation. 

       ( ) 22 2'' eGB Kdd ⋅+≈  
With 
d'B = diameter of the diffraction disc at the limits of the geometrical depth of focus in µm 
d'G = geometrical circle of confusion (in µm) 
Ke = effective f-number [Ke = K ⋅ (1-β/βp)] 
 
 
Useful effective f-number 
In the macro region together with small image formats we quickly exceed the limit for 
geometrical depth of focus validity which is given by 
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This is due to the fact that the permisssable circle of confusion d'G is very small (e.g. 33 µm 
for the format of 24 x 36 mm²). 
In this case it is advantageous to operate with the useful effective f-number KeF. 
 
This is the effective f-number where the disc dimension at the diffraction limited depth of 
focus is equal to the geometrical permissable circle of confusion. 
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Then the depth of focus is equal to the diffraction limited case. 
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4. Telecentric perspective - projection center at infinity  
 
 4.1 Object side telecentric 

4.1.1 Limitation of ray bundles 
As has been shown in chapter 3.3, there are two projection centers with Gaussian optics, the 
center P of the entrance pupil in object space and the center P' of the exit pupil in image 
space. Hence, for object side telecentric systems, the object side projection center P (and 
therefore the entrance pupil) has to be at infinity (c.f. chapter 2).  
In the simplest case - which we choose for didactic reasons - this may be done by positioning 
the aperture stop at the image side focal point of the system. The aperture stop is then the exit 
pupil XP. The entrance pupil, EP, is the image of the aperture stop in object space, which is 
situated at infinity and is infinitely large. For the pupil magnification ratio we therefore have:  

 
(see fig. 4-1).  

 
Fig. 4-1: The principle of object side telecentric imaging 

 
The principle rays (blue) are parallel to the optical axis (virtual from the direction of the 
center EP - dashed) passing through the edge of the object to the lens, from there to the center 
of XP and finally to the edge of the image. This principle ray is the same for all equally sized 
objects (y1, y2) regardless of their axial position and it crosses the fixed image plane at one 
single point. For the object y2 it is (in a first approximation) the central ray of the diffusing 
circle*)  
The result is, that the image size in a fixed image plane is independent of the object 
distance  

 
*) Note: please compare the article: : "Bilateral telecentric lenses-a premise for high 
precision optical measurement techniques"  

 

www.schneiderkreuznach.com/knowhow/telezentrie_e.htm


The marginal rays RS (red) and the pharoid rays PS (black and green) have an aperture 
angle alpha which depends on the diameter of the aperture stop AB (= XP). Here we may see 
the characteristic limitation for imaging with telecentric systems:  

The diameter of the optical system (in the present case the lens) must be at least as large 
as the object size plus the size determined by the aperture angle of the beams.  
The imaging equations become now:  

 

4.1.2 Depth of field 
The f-number K = f '/DEP is now formally = 0 and 1/ßp approaches infinity. Therefore the 
usual expression for the depth of field will be undetermined. We may however transform the 
equation:  

 

 
A = sin (alpha) is the object side numerical aperture.  
With the sin-condition  

 
we have:  

 
A' = sin (alpha') = image side numerical aperture  

 
 

4.1.3 Diffraction effects 
The diameter of the diffraction disc d'B is given by:  



 

 
For the diffraction limited depth of focus T'B and depth of field TB we have:  

 

 

 

 
 

4.2 Bilateral telecentric 

4.2.1 Afocal systems 
For bilateral (object and image side) telecentric systems, the entrance pupil EP as well as the 
exit pupil XP have to be at infinity. This we may achieve only with a 2-component system, 
since the aperture stop has to be imaged in object space as well as in image space at infinity. It 
follows that the image side focal point of the first component must coincede with the object 
side focal point of the second component. (F'1 = F2).  
Such systems are called afocal systems since the object- and image side focal points (F'G, FG) 
for the complete system are at infinity now. Fig. 4-2 shows the case of two components L1, 
L2 with positive power.  



 

Fig. 4-2: Afocal systems 
A ray parallel to the optical axis leaves the system also parallel to the optical axis, the inter-
section point lies at infinity, this is the image side focal point F'G of the system. The same is 
true for the object side focal point FG of the system. (afocal means "without focal points")  
A typical example of an afocal system with two components of positive power is the Kepler 
telescope. Objects which practically lie at infinity will be imaged by this system again to 
infinity. The images are observed behind the second component with the relaxed eye (looking 
at infinity). Fig. 4-3 shows this for an object point at the edge of the object (e.g. the edge of 
the moon disk).  

 

Fig. 4-3: The Kepler telescope 
The clear aperture of the first component (L1 = telescope lens) now acts as the entrance pupil 
EP of the system. The image of EP, imaged by the second component (L2 = eye-piece) is the 
exit pupil XP in image space (dashed black lines). The object point at infinity sends a parallel 
bundle of rays at the field angle w into the component L1. L1 produces the intermediate 
image y' at the image side focal plane F'1. At the same time this is the object side focal plane 
for component L2. Hence this intermediate image is again imaged to infinity by the second 



component L2 with a field angle of w'. The eye is positioned at the exit pupil XP and observes 
the image without focussing under the field angle w'.  
Since the object as well as the image are situated at infinity (and are infinitely large), the 
magnification ratio is undetermined. In this case, for the apparent magnification of the image, 
it depends on how much the tangent of the viewing angle w' has been changed compared to 
the observation of the object without the telescope from the place of the entrance pupil 
(tangent of viewing angle w). In this way the telescope magnification is defined:  

The telescope magnification is the ratio of the viewing angle (tan w') with the instrument 
to the viewing angle (tan w) without the instrument.  

 

From fig. 4-3:  

 
Hence the telescope magnification VF is given by:  

 
With a large focal length f '1 and a short eye-piece focal length f2 we will get a large 
magnification of the viewing angles. This is the main purpose of the Kepler-telescope.  

 

4.2.2 Imaging with afocal systems at finite distances 
With afocal systems one may however not only observe objects at infinity, but one may also 
create real images in a finite position. This is true in the case of contactless optical 
measurement technique and has been the main reason for choosing the Kepler-telescope as a 
starting point.  
In order to generate real images with afocal systems we have to consider the following fact: 
we will get only real final images, when the intermediate image of the first component is 
situated in the region between the first component and the point F'1 = F2. Otherwise the 
second component would act as a magnifying lupe and the final image would be virtual. This 
is explained by fig. 4-4:  



 

Fig. 4-4: real final images with afocal systems 
The object is now situated between the object side focal point F1 and L1. Because of this, the 
intermediate image y' is virtual and is located in front of the object. This virtual intermediate 
image is then transformed by L2 into the real final image y".  
For the mathematical treatment of the imaging procedure, we now apply the Newton imaging 
equations one after the other to component L1 and L2.  
Intermediate image at component L1:  

 
This intermediate image acts as the object for imaging by the second component L2 (in Fig. 4-
4 the intermediate image is virtual, hence for the second component this is a virtual object!)  
With the relation:  

F'1 = F2 (afocal sytem) 
and thus:  

z2 = z'1 
Imaging at the second component (L2):  

 
Overall-magnification ratio:  



 
With z'1 = z2 und f2 = -f'2 we have:  

 
with the telescope magnification VF this gives:  

 

The overall magnification ratio is independent of the object position (characterized by 
z1) and constant.  
This is valid - in contrast to the object side telecentric imaging (where the image size has been 
constant only for a fixed image plane c.f. chapt. 4.1.1) -for all image planes conjugate to the 
different object planes. If the image plane is slightly tilted there is - to a first approximation - 
no change in image size, because the image side principal ray is parallel to the optical axis. 
The image size error produced by the tilt angle is only dependent on the cosine of this angle 
(c.f. chapt. 5).  

The image positions may be calculated with the help of the second form of the Newton 
equations:  

 
Dividing the second by the first equation yields:  

 
and with z'1=z2 we have:  

 

 
For the axial magnification ratio alpha' we have:  

 
 

4.2.3 Limitation of ray bundles 
We now position the aperture stop AB at F'1 = F2. The entrance pupil EP (as the image of the 
aperture stop in object space) is now situated at - infinity, and the exit pupil XP (as the image 



of the aperture stop in final image space) is situated at + infinity. With that we may construct 
the ray bundle limitations as in fig. 4-5.  
 

 
Fig. 4-5: limitation of ray bundles for a bilateral telecentric system 

The principle rays (blue) are again the projection rays and represent the central ray of the 
imaging ray bundles. They start parallel to the optical axis (coming virtually from the 
direction of the center of EP-dashed) passing through the edges of the objects y1 and y2 up to 
component L1. From there through the center of the aperture stop (which is conjugate to EP, 
XP) to component L2 and finally proceeding parallel to the optical axis to the edge of the 
images and pointing virtually to the center of XP at infinity (dashed).  
The marginal rays RS (red) have an aperture angle alpha which depends on the diameter of 
the aperture stop. They start at the axial object point (pointing backwards virtually to edge of 
EP) up to L1, from there to the edge of the aperture stop up to component L2 and proceeding 
finally to the image (pointing virtually to the edge of XP at infinity).  

The pharoid rays (pink and green) also have an aperture angle alpha. They are coming 
virtually from the edge of EP (dashed) to the edge of the objects, from there real up to 
component L1, then through the edge of the aperture stop up to L2 and finally to the edge of 
the image (pointing virtually to the edge of XP at infinity-dashed).  

Here we may see again very clearly, that because of the bilateral telecentricity, equally 
sized object will give equally sized images, even for the different image planes.  

"Pupil magnification ratio ßP"  
Since the entrance pupil EP as well as XP are at infinity (and are infinitely large), we may not 
use the term magnification ratio but should speak correctly of the pupil magnification VP. 
The principle rays of the Kepler-telescope (c.f. fig. 4-3) are now the marginal rays of the 
bilateral telecentric system, since the positions of pupils and objects/images have been 
interchanged. Therefore we may define the pupil magnification VP in an analogous way to the 
telescope magnification VF:  



 

 
 

4.2.4 Depth of field 
The starting point is the formula which expresses the depth of field in terms of the 
magnification ratio ß (c.f. chapt. 3.5)  

 
We have:  

 
hence:  

 
This gives for the depth of field:  

 
 
Depth of focus:  
With  

 
we have:  

 
 

To top   
 

4.2.5 Diffraction effects 
Extension of the image disc:  
Starting point is the normalized coordinate v from section 3.6.2 and solved for r:  

 



this gives:  

 
in the focal plane we have v0 = 3.83:  

 
and at the edge of the diffraction limited depth of focus we have vB = 5.5  

 

Diffraction limited depth of focus  
Starting point is the normalized coordinate u from section 3.6.2 and solved for z:  

 
The depth of focus is twice this:  

 
The normalized coordinate u for diffraction limited depth of focus is u = 3.2 (Rayleigh-
criterion), hence:  

 
and with  

 
we have for the depth of field:  

 
5.Error budget for 2D optical measurement techniques  

5.1 Projection center at finite distance (entocentric perspective) 

5.1.1 The measurement principle 

5.1.2 Determination of the magnification ratio 

5.1.3 Parameters influencing the relative error in image size (delta y'/y') 

 5.1.3.1 The influence of edge detection 

 5.1.3.2 The influence of misaligned image plane 

 5.1.3.3 The influence of misaligned object plane 
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 5.1.3.4 The influence of image plane tilt 

 5.1.3.5 The influence of object plane tilt 

 5.1.3.6 Deviation of the optical axis from the mechanical reference axis ("Bore 
sight")  

 5.1.3.7 Nonlinearity of the camera model (Distortion) 

5.1.3.8 The overall relative error in the object  

5.2 Projection center at infinity (telecentric perspective) 

          5.2.2 Bilateral telecentric 

          5.2.1 Object side telecentric 
 

5.1 Projection center at finite distance (entocentric Perspective) 

5.1.1 The measurement principle 
In 2D Measurement techniques one generally calculates the object size from the image size 
and the (calibrated) magnification ratio. We first start with the linear camera modell (validity 
of Gaussian Optics). Nonlinear influences (distortion) will be treated in a later chapter. Then 
we have the fundamental relation for the object size y:  

y y= ′
β    (1) 

 The uncertainties (errors) in the determination of the image size y' and the magnification ratio 
will introduce some errors in object size y. The relative measurement error in the object is 
given (to a first approximation) by the total differential of equ. (1):  

∆ ∆ ∆y
y

y
y= ′

′ + β
β            (2) 

 

 Hence the relative measurement error in the object is composed of two terms: the relative 
measurement error in the image and the error in the determination of the magnification ratio.  

 

5.1.2 Calibration of the magnification ratio 
This is usually done with a scale (divided rule) in the object plane. With the imaging 
parameters set to the nominal values for the application, we image the scale onto the image 
plane and determine the image size. For the moment we assume a distortionless optical 
system. The influence of distortion will be considered in chapter 5.1.3.7. Then the 
magnification ratio is given by the ratio of image size to object size:  

β0
0

0
=

y
y

′  

 The relative error is again given by the total differential:  

http://www.buginword.com


∆ ∆ ∆β
β

0

0

0

0

0

0
≤ ′

′ +
y

y
y

y     (3) 

Here Delta y'o is the uncertainty of the image size which is influenced by the edge detection 
algorithm and the number of pixels of the image sensor(see section 5.1.3.1). The relative error 
in the object size for a glass scale is approximately:  

 
 

5.1.3 Parameters influencing the relative error in image size (delta y'/y') 
In the following sections we will have a closer look at the parameters which have an influence 
on the error of the relative image size in equ. (2). Many of these are connected with 
geometrical misalignment of the imaging geometry. The following figure gives an overview 
of these parameters.  

 

Relative image size error:  

[ ]' , ', , ,
'

y F e e
y

η κ ε∆
= ∆ ∆ ∆ ∆ ∆  

In addition there will be an error influence on the relative image size by the edge detection 
algorithm (ED) and by the distortion of the optical system (V)  

[ ]' ,
'

y F ED V
y

∆
=  

 
5.1.3.1 Influence of edge detection  
 The image size is given by the edges of the object; they determine the image geometry. These 
edges have to be detected in the image. In order to have good accuracy, we have to use a 
pixel-synchronized image capture into the frame grabber. Then the edge is detected with the 
help of subpixel-edge detection algorithms with an accuracy in the sub-pixel range. A 
realizable value in practice is around 1/10 of a pixel. The image size of the object to be 
measured is given by the number of pixels N. Then we have for the relative error in image 
size by edge detection:  

0 12' . (
' (ED

y p
y N pi

∆
= ⋅

)
)

ixel
xel

      (4) 



 

 The factor 2 is due to the fact that for the image size we have to detect two edges. Fig 1 
shows the relative error for edge detection as a function of the number of pixels N.  

 
Fig. 1: Relative error of image size by edge detection 

5.1.3.2 Influence of shifted image plane  
 If the objects to be measured are located in different object planes then the sensor must be 
positioned accurately in the corresponding image plane, for which the magnification ratio has 
been calibrated. With a shift error delta e', we have an error in the image size, but no error in 
the magnification ratio since it has been taken from the calibration procedure. With the 
formula of chapt. 3 we get:  

( )ββ −′
′∆

=
′
′∆

=
′
′∆

pBE f
e

e
e

y
y

  (6) 

With:  
 e' = Distance exit pupil (XP) - image plane  

f' = focal length of the lens  
ß = magnification ratio (negative !)  

ßp = pupil magnificatio ratio 

 Fig. 2 shows the influence of the image plane shift delta e' on the relative error as a function 
of the magnification ratio ß (delta e' = parameter) using a Schneider Kreuznach lens,  1:1.4/6 
mm as an example  
(f ' = 12.65 mm ßp = 4.31).  



 
Fig. 2: Influence of image plane shift on the relative error 

 
5.1.3.3 Influence of shifted object plane  
 In practical situations one wants to measure a lot of parts with the same geometry. In this 
case there will be slightly different object positions because of part tolerances and the 
mechanical transport mechanism. This will result in a slightly different magnification ratio 
compared to the calibrated value which leads to a different image size (y'+delta y'). Under the 
assumption of an unchanged nominal magnification ratio, this gives an error delta y in object 
size. From the formula of chapt. 3 we may derive:  
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 With:  
 Delta e = Tolerance in object position  

e = Distance entrance pupil (EP) - object plane  
f ' = Focal length of the lens  

ß = Magnification ratio (negative!)  
ßp = Pupil-magnification ratio  

c = Camera constant 
Fig. 3 shows the influence of object plane shift delta e on the relative error as a function of the 
magnification ratio ß (delta e = parameter) for the lens MCS 1:1.4/6 mm.  



 
Fig. 3: Influence of object plane shift 

 
5.1.3.4 The influence of image plane tilt  
This effect results in an image height dependent shift of the image plane. Fig. 3a shows the 
geometrical relationships.  

 
Fig. 3a: Geometrical relationships for tilted image plane 

 With the sin-theorem for the triangles ABC and ADE we get:  



 

 
This gives for the absolute values:  

 
we have:  
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With good approximation this may be simplified:  

∆ ′
′







= + ⋅ ′ −
+ ⋅ ′ = ⋅ ′

+ ⋅ ′
y

y
w

w
w

wKBE

cos sin tan
cos sin tan

tan tan
tan tan

κ κ
κ κ

κ
κ

1
1  

( ) ( )
∆ ′

′






≈ ⋅ ′ = ⋅ ′ ′ = ′ ⋅
′ −

y
y w y e y

fKBE p
tan tan tan / tanκ κ κ

β β
    (9) 

 
κ = Tilt angle of image plane  
w' = Image-side pupil field angle  
y' = Image height  
e' = Distance exit pupil (XP) - image plane 
Fig. 4 shows the influence of image plane tilt on the relative error for an image height of 10 
mm as a function of the tilt angle in arc min, with the exact formula and with the 
approximation.  



 
 

Fig. 4: Relative error by image plane tilt as a function of tilt angle (y' = 10 mm) 

 Fig. 5 shows the influence of image plane tilt on the relative error as a function of 
magnification ratio for two different tilt angles (3 and 6 arc min)  

 
 

Fig. 5: Relative error by image plane tilt as a function of image height (Kappa = 30 arc 
min and 3 arc min) 

 
5.1.3.5 The influence of object plane tilt  
 The influence of an object plane tilt relative to the mechanical refrence axis is equivalent to 
an object height dependent shift of the object plane.  
With a tilt angle etha we have from equ. (7):  
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 Fig. 6 shows the effect of object plane tilt as a function of magnification ratio for an image 
height of y' = 10 mm. Here it is obvious that for larger magnification ratios the relative error 
becomes smaller. This is due to the fact that for smaller ß the extension of the object plane 
will be larger and hence the defocussing, Delta e, at the edge of the object field will increase.  

 
Fig. 6: The influence of object plane tilt on the relative error 

 
5.1.3.6 Deviation ε of the optical axis from the mechanical reference axis ("Bore sight")  
 A tilt of the optical axis with respect to the mechanical reference axis has the same effect at 
the object and image planes, as shown by fig. (7)  



 
 

Fig. 7: Effect of a tilt of the optical axis with respect to the mechanical reference axis 

 Therefore the relative error is composed of two parts according to equs. (9) and (10):  
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 Fig. 8 shows the cummulative influence on the relative error.  

 
 

 
 
 



5.1.3.7 Nonlinearity of the camera model by distortion  
 The distortion is defined as the relative difference of the actual measurement point with 
respect to the linear case given by Gaussian Optics.  
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y'i = real image point coordinate 
y'G = Gaussian image point 
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V
      (12) 

The theoretical distortion may be corrected via suitable algorithms. Then there remains 
additional distortion generated by manufacturing tolerances on the order of magnitude 5·10-4 
to 1·10-3. With the help of suitable calibration targets this may be further reduced. This same 
calibration target may also be used for the determination of the magnification ratio (cf.section 
5.1.2).  
5.1.3.8 The total relative error in the object  
 
According to the above treated relationships we now have for the total error:  
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If we look at these error terms for the reference lens (MCS 1:1.4/12) we see that the most 
dominant term is the object plane variation ∆e for lenses with finite pupil positions and for 
large magnification ratios. Hence it makes no sense to use such lenses for magnification 
ratios |β| > 0.2. 
The following gives a an error budget for the total relative error for the magnification ratios β 
= -1/20 and β=-1/5   (MCS 1:1,4/12 mm)  
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This gives a maximum total error of:  

32 3 10,
tot

y
y

−∆
≈ ⋅  

 
Under the assumption of statistical independence of the various error terms we get the RMS-
value  
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y
y

− ∆
≈ ⋅ 

 
 

e.g. for an object of size 140 mm we obtain a mean error of approx. 0.15 mm.  
 
Magnification ratio ß=-1/5: 
The following error term will change:  
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This gives a maximum total error:  
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5.2 Projection center at infinity (telecentric perspective) 
 

5.2.1 Object side telecentric 
Here the entrance pupil is at Infinity and is infinitely large (as the image of the aperture stop 
at the focal plane which itself is the exit pupil XP). Therefore we have for the pupil 
magnification ratio ßp  
     β p

AP
EP= ∅

∅ = 0  

From the general imaging equation (Coordinate origins in the pupils, cf. chapt. 3) we have:  

    
 (The projection center is at infinity)  
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All other error terms remain unchanged.  
Thus we have for the relative total error of the object:  
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Error estimation 1 (ßp = 0, f' = 200 mm, ß = -1/4):  
(All error tolerances as in 1.3.8)  
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This results in a maximum total error of 
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Error estimation 2 (ßp = 0, f' = 100, ß = -1:  
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Maximum relative total error:  
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RMS-value:  
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5.2.2 Bilateral telecentric (object- and image side) 
Both EP and XP are at infinity. Therefore (see ):  
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Error estimation:  
Maximum rel. total error  
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RMS-value:  
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It becomes obvious here, that to reduce the relative error further we have to reduce the edge 
detection error and the residual distortion which are dominant now.  
 
 
 
 6. The bilateral telecentric lenses from Schneider-Kreuznach  

 
Here we would like to present to you our bilateral telecentric lenses. There are 5 different 
types for different magnification ratios.  

 

 

 

 

 

• Xenoplan 1:1/A'=0.14 

• Xenoplan 1:2/A'=0.14 

• Xenoplan 1:3/A'=0.14 

• Xenoplan 1:4/A'=0.13 

• Xenoplan 1:5/A'=0.13 
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http://www.schneiderkreuznach.com/industrieoptik_e/telezentr/telezentr.htm


 
 
 
 
They have the following common characteristic properties:  

• high image side numerial aperture of 0.14 resp. 0.13 

o for conventional lenses this corresponds to an effective f-number of Ke = 3.5 
resp. 3.8 

• bilateral telecentric 

o they possess all the advantagesfor optical measurement techniques which have 
been explained in detail in this short course. (chapt. 4, chapt. 5) 

• variable iris and excellent image quality at full f-number. 

o at A'=0.09 nearly diffraction limited 

• large area of applicable object depth, which is far larger then the depth of field, 
e.g. for the lens 1:5/0.13 nearly 100 mm 

o thats why all lenses have a focussing capability 

• very low distortion 

o e.g. 1:5/0.13 Vmax = 2 µm absolute 

• very good telecentricity - fractions of a micron 
In what follows we shall explain the diagrams contained in the technical data sheets of these 
lenses since they are somewhat different from the usual presentation.  

 

 
1.Gaussian data  
   

In this block you will find the Gaussian optical data of the corresponding lens as explained in 
detail in this course (chap. 3, chap. 4). Sum d means the overall optical length of the system, 
counted from the first to the last lens vertex. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
2. Telecentricity 

  
 
 

This diagramm shows the 
deviations in µm from exact 
telecentricity as a function of 
normalized image height 
(y'max = 5.5 mm) for a 
variation in object position 
of +/- 1 mm. The parameters 
here are three different 
object to image distances 
(OO'). You will find the 
object side deviation as well 
as the image side deviation 
from telecentricity (in this 
example the latter is 
practically identical to zero.).  

 
 

 
 

3. Distortion  
 

 

 
   
   
   

Distortion is given as an absolute 
deviation (in µm) as a function of 
normalized image height, and as 
before for three different object to 
image distances. 

 
 

 



4. Spectral Transmission  
 

   
   
   

The spectral transmission is given as 
a function of wavelength and is valid 
for a ray along the optical axis. It 
includes the absorption effects of the 
optical glass as well as the 
transmission losses by the optical 
anti-reflection coatings. 

 
 

 
5. Modulation Transfer Function (MTF)  

   
The MTF is given for three spatial 
frequencies (20, 40, 80 Lp/mm) as 
a function of relative image height 
and for radial orientation (full 
lines) as well as for tangential 
orientation (broken lines)of the 
object features. The different 
diagrams in the data sheet show 
the MTF for different image side 
numerical apertures and for 
different object to image distances 
(OO'). The spectral weighting 
function for which these diagrams 
are valid is given in the header of 
the data sheet. For an introduction 
to the meaning of the MTF cf.: 
Optics for digital photography 
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6. edge spread function and edge width  
 

There are three data sheets 
corresponding to edge spread 
functions. Each data sheet is valid 
for one single object to image 
distance (OO'). The edge as an 
object is defined as a sharp step in 
luminosity jumping from 0 to 
100% at a certain image height 
(Heavyside step function).The 
edge spread function gives the 
irradiance distribution in the image 
of this object. On the abscissa we 
have the extension of the edge 
spread function (1 box 
corresponds to 5 µm, on the 
ordinate we have the relative 
irradiance in percent. The left 
column of these diagrams shows 
these function for full f-stop-nr 

and three different image heights allways for radial (full lines) and tangential (dashed lines) 
orientation of the edge. The right column represents the same situaion for a numerical 
aperture of 0.09. On the bottom of the diagrams you may find the values for the edge widths 
for radial (Kr) and tangential (Kt) Orientation.  
  
Definition of the edge widths  

 
   

The origin of the local coordinate 
system u is positioned at the 
median (50%-value) of the edge. 
Then the left edge width LK is 
defined as the width of the 
rectangle with equal area as the left 
side of the edge spread function 
(up to the origin) the right edge 
width RK is defined in analoguous 
way. The sum LK+RK is the edge 
width K (for radial or tangential 
orientation of the edge).  
It may be shown that with the 
above choice of the local 
coordinate system the edge width 
K will be a minimum. 
Fuerthermore we then have a 
relative simple correspondance to 
the Optical Transfer Function (cf. 
[14]).  
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